三大数论猜想:简单到初中生都懂,却难倒数学家
数论,大数单到懂这个数学中最古老且基础的论猜分支,以其简洁与深邃吸引着无数人的想简江苏某某策划服务中心目光。
数论探索的初中是整数的性质及其之间的复杂关系。其中有些问题,生都数学尽管看似简单,难倒却隐藏着极大的大数单到懂挑战。比如,论猜哥德巴赫猜想、想简江苏某某策划服务中心考拉兹猜想以及孪生素数猜想,初中这些问题虽然容易理解,生都数学但要找到它们的难倒证明却异常艰难。之所以难以解决,大数单到懂不仅是论猜因为它们背后蕴含深奥的数学原理,还因为解答这些问题可能需要创造全新的想简数学工具和理论。
1. 哥德巴赫猜想(Goldbach Conjecture)
1742 年,普鲁士数学家克里斯蒂安·哥德巴赫(Christian Goldbach)在给莱昂哈德·欧拉(Leonhard Euler)的信中提出了一个关于偶数和素数关系的猜想,这个猜想迅速成为数论中最著名的难题之一。
![]()
哥德巴赫猜想有两个版本:
- 强哥德巴赫猜想:每个大于 2 的偶数都可以表示为两个素数之和。例如:
4 = 2 + 2 6 = 3 + 3 8 = 3 + 5 ... 12 = 5 + 7 = 7 + 5 24 = 5 + 19 = 7 + 17 = 11 + 13 = 13 + 11 ...
- 弱哥德巴赫猜想:每个大于 5 的奇数都可以表示为三个素数之和。例如:
7 = 2 + 2 + 3 9 = 2 + 2 + 5 11 = 3 + 3 + 5 ...
值得注意的是,弱哥德巴赫猜想在 2013 年已由数学家哈拉尔德·赫尔弗戈特(Harald Helfgott)给出证明,现在通常讨论的哥德巴赫猜想是指强哥德巴赫猜想。
到目前为止,强哥德巴赫猜想已经通过计算机验证到 4 × 10^18 以上的数。但这种计算验证无法提供数学上一般化的证明。
数学家已经证明了许多与哥德巴赫猜想相关的重要结果。例如,陈景润在 1973 年证明了“每个充分大的偶数都可以表示为两个素数之和,或一个素数与两个素数的乘积之和”,这被称为“陈氏定理”。
2. 考拉兹猜想(Collatz Conjecture)
![]()
考拉兹猜想由德国数学家洛萨·考拉兹(Lothar Collatz)在 1937 年提出,也被称为“3n+1”猜想或“角谷猜想”。
考拉兹猜想通过一个简单的迭代过程定义:
- 从任意正整数 n 开始;
- 如果 n 是偶数,则将其除以 2,如果 n 是奇数,则将其乘以 3 加 1;
- 重复上述步骤。
该猜想则声称:对于任何正整数 n,重复这一过程最终都会到达 1。
举例:
例如,从 n = 6 开始: 6 → 3 → 10 → 5 → 16 → 8 → 4 → 2 → 1
从 n = 19 开始: 19 → 58 → 29 → 88 → 44 → 22 → 11 → 34 → 17 → 52 → 26 → 13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1
通过计算机验证,考拉兹猜想对 n 小于 2.95×10^20 以下的数都是成立的,但也无法得出一般性的证明,考拉兹猜想仍然是一个开放问题。
孪生素数猜想(Twin Prime Conjecture)
![]()
孪生素数猜想是素数研究中的一个重要问题,可以追溯到古希腊时代,但正式的表述和研究主要始于 19 世纪。这一猜想关注的是:是否存在无穷多对素数,它们的差为2。
例如: (3, 5), (5, 7), (11, 13), (17, 19), (29, 31) 这些都是孪生素数对。
尽管孪生素数猜想至今未被严格证明,但在这一问题取得了许多重要进展。
- 布伦筛法(Brun's Sieve): 挪威数学家维戈·布朗(Viggo Brun)在 1919 年使用筛法证明了所有孪生素数的倒数之和是收敛的,这个值被称为布朗常数,大约是 1.902。这是对孪生素数猜想的一个重要贡献。
- 张益唐的突破: 2013 年,数学家张益唐取得了突破性的进展。他证明了存在无穷多个素数对,其间隔小于 70,000,000。这一结果被称为“有限间隔素数定理”。张益唐的工作开启了新一轮的研究热潮。
- Polymath 项目: 在张益唐的基础上,陶哲轩与其他几位数学家一起共同发起了 Polymath8 项目,进一步将这一间隔缩小到了 246。这一系列的进展大大增加了数学界对孪生素数猜想最终证明的信心。
通过这些猜想的探索,我们不仅能够见证数学知识的积累和发展,还可以感受到数学家们对未知问题探索的热情和坚持。这些未解问题不仅是数学领域的挑战,也是对人类智慧的挑战,激励着每一位数学爱好者去探索和理解数学的更深层奥秘。
(责任编辑:综合)
-
绵中11人、东辰3人、南山2人......NOIP2025一等奖获奖名单出炉!
绵阳一手教育资讯、升学政策解读12月13日,CCF公布了2025年NOIP一等奖获奖名单小编整理了NOIP2025一等奖四川省的名单!来看看牛娃们的优异表现!NOIP2025全国一等奖、二等奖、三等奖
...[详细]
-
在这样一个飞速发展的时代,提升全民科学素养,大众科普与科技传播也显得尤为重要。由上海市科学技术委员会和上海广播电视台联合出品,上海广播电视台融媒体中心制作的科创先锋访谈节目《执牛耳者》,5月18日起在
...[详细]
-
去年10月,巴以大规模冲突的战火烧到了美国高校,前有哈佛学生被多位华尔街大佬扬言封杀,后有斯坦福教授被近万名学生请愿开除,转眼大半年过去了,这把战火反倒愈烧愈烈,正因此,留学圈出现了一幕长达数月的奇景
...[详细]
-
中新健康 | 新疆石河子何以入选国家中医药传承创新发展试验区?2024-05-16 22:03:33 来源:中国新闻网
...[详细]
-
12月2日,春秋航空日本株式会社发布关于12月1日IJ005航班的情况声明:12月1日由成田飞往上海浦东的IJ005航班,因发生旅客在机内妨碍航班安全运行的非法行为,导致无法维持机内秩序并继续安全飞行
...[详细]
-
版权声明:本文版权为网易汽车所有,转载请注明出处。网易汽车5月14日报道日前,新款比亚迪宋参数丨图片)PLUS DM-i申报图已经在工信部公布。据悉新款比亚迪宋PLUS DM-i将搭载最新第五代DM-
...[详细]
-
央广网郑州5月16日消息记者 夏莎)5月16日,记者从中国铁路郑州局集团有限公司以下简称“国铁集团郑州局”)获悉,2024年5月17日至19日、5月24日至26日、5月31日至6月2日,国铁集团郑州局
...[详细]
-
当奥运资格系列赛在上海的黄浦滨江上演,极限运动再次成为社交网络上的热门话题。带着“年轻化”标签的城市新兴运动,在来到上海参赛的464位全球精英运动员中,绝大部分都只是十几岁的年轻人。就像中国队的28人
...[详细]
-
我是北京房姐,资深房产投资专家。目前已为10000+人提供买房最佳解决方案。房姐不像其他自媒体遮遮掩掩的让你摸不清头脑!房姐属于实战派只说对你最有用的操作和建议。以下内容选自【北京房姐】公众号关注“北
...[详细]
-
最近两个月,如果你来到英国的影院,很有可能会邂逅一场中国舞台剧的高清放映。4月29日,中央芭蕾舞团出品制作的《吉赛尔》4K高清影像在英国伦敦梅菲尔的科尔荣电影院首映。整个5、6月的初夏时节,首届华语舞
...[详细]

2024年江西省全民营养周启动 推动重点人群营养改善
